【输血医学基础】静脉血栓形成机制的最新报道汇集
内皮功能障碍和由此产生的炎症细胞粘附分子的上调,导致血管疾病的发展1-3。炎症细胞分泌细胞因子/趋化因子和生长因子,诱导血管内皮损伤,促进血管平滑肌细胞增殖4。反之,激活的内皮细胞和血管平滑肌细胞分泌多种因子,这些因子激活血小板和凝血溶蛋白系统。这些因素也以自分泌/旁分泌的方式影响血管细胞本身8-9。在血管活性因子的分泌过程中,Rho激酶系统的过度和持续激活在活性氧的产生中起着至关重要的作用。此外,过量的活性氧(氧化应激)导致内皮损伤13,可以增强粘附分子的表达,激活血小板和凝血系统8,14- 24。
静脉血栓栓塞(VTE)包括深部静脉血栓形成和肺血栓栓塞27-28。肺血栓栓塞是最强危机生命的静脉血栓栓塞,停止抗凝治疗后复发率较高。深静脉血栓形成常与肺血栓栓塞有关,住院患者发生静脉血栓栓塞的风险很高。主要的高风险因素有遗传基因的改变,肥胖、药物、怀孕、衰老、创伤和恶性肿瘤。有研究表明,在老鼠体内证实胰腺癌细胞来源的微泡可诱导血栓形成。甚至,还研究得出肿瘤来源微粒表达组织因子(TF)28。另有研究表明微囊泡通过新的途径诱导血栓形成31。另外,绝经前女性服用激素避孕患静脉血栓栓塞的风险高。预测VTE复发的因素包括高龄、肥胖、男性、活动性癌症、近端深静脉血栓形成、停止抗凝治疗后D-二聚体水平升高29,抗磷脂综合征,抗凝血酶、蛋白C或蛋白S缺乏,妊娠以及小于3个月的抗凝治疗。内皮损伤、瘀血和血液高凝是静脉血栓形成的重要原因27。促炎细胞因子/趋化因子在内皮激活、损伤及粘附分子表达也可促进血栓形成33-35。静脉血栓和动脉血栓的形成机制不同。特别是静脉血栓形成主要归因于静脉血液停滞37。最新研究报道,Nosaka等人研究得出肿瘤坏死因子受体55(TNF-Rp55)缺失,延迟静脉血栓的消退。在小鼠静脉血栓模型中,他们阐明TNFα-TNF-Rp55轴,可通过增强纤维蛋白溶解和胶原溶解,在深静脉血栓形成中发挥抗血栓作用。传统抗凝治疗主要用于预防肺血栓栓塞,也可防止深静脉血栓栓子生长,却增加了出血的发生率28,38。
然而,Nosaka等人的研究提示TNFα-TNF-Rp55轴可能是一个血栓溶解的新靶点36。最近一期《动脉硬化、血栓和血管生物学》杂志报道,体外静脉血栓形成模型中证实了血小板以红细胞压积和糖蛋白VI依赖的方式驱动血栓传播。更有意义的是研究者们开发了一种体外微流控模型系统来深入研究血栓形成39-40。
关键词:静脉血栓;静脉血栓栓塞(VTE);血栓溶解;内皮功能障碍;炎症细胞粘附分子
参考文献:
1. Shimokawa H. 2014 Williams Harvey Lecture: importance of coronary vasomotion abnormalities-from bench to bedside. Eur Heart J.2014;35:3180–3193. doi: 10.1093/eurheartj/ehu427
2. Satoh K. AMPKα2 regulates hypoxia-inducible factor-1α stability andneutrophil survival to promote vascular repair after ischemia. Circ Res.2017;120:8–10. doi: 10.1161/CIRCRESAHA.116.310217
3. Shimokawa H, Satoh K. Vascular function. Arterioscler Thromb Vasc Biol.2014;34:2359–2362. doi: 10.1161/ATVBAHA.114.304119
4. Shimokawa H, Sunamura S, Satoh K. RhoA/Rho-kinase in the cardiovascular system. Circ Res. 2016;118:352–366. doi: 10.1161/CIRCRESAHA.115.306532
5. Satoh K, Kikuchi N, Kurosawa R, Shimokawa H. PDE1C negatively regulates growth factor receptor degradation and promotes VSMC proliferation.Circ Res. 2015;116:1098–1100. doi: 10.1161/CIRCRESAHA.115.306139
6. Satoh K. Globotriaosylceramide induces endothelial dysfunction in fabry disease. Arterioscler Thromb Vasc Biol. 2014;34:2–4. doi:10.1161/ATVBAHA.113.302744
7. Satoh K, Godo S, Saito H,et al. Dual roles ofvascular-derived reactive oxygen species–with a special reference to hydrogen peroxide and cyclophilin A. J Mol Cell Cardiol. 2014;73:50–56.doi: 10.1016/j.yjmcc.2013.12.022
8. Satoh K, Fukumoto Y, Sugimura K, et al. Plasma cyclophilin A is a novelbiomarker for coronary artery disease. Circ J. 2013;77:447–455. doi:10.1253/circj.CJ-12–0805.
9. Satoh K, Berk BC. Circulating smooth muscle progenitor cells: novelplayers in plaque stability. Cardiovasc Res. 2008;77:445–447. doi:10.1093/cvr/cvm088
10. Satoh K. Cyclophilin A in cardiovascular homeostasis and diseases.Tohoku J Exp Med. 2015;235:1–15. doi: 10.1620/tjem.235.1
11. Satoh K, Nigro P, Berk BC. Oxidative stress and vascular smooth musclecell growth: a mechanistic linkage by cyclophilin A.Antioxid RedoxSignal. 2010;12:675–682. doi: 10.1089/ars.2009.2875
12. Satoh K, Shimokawa H, Berk BC. Cyclophilin A: promising new targetin cardiovascular therapy. Circ J. 2010;74:2249–2256. doi: JST.JSTAGE/circj/CJ-10–0904.
13. Galley JC, Straub AC. Redox control of vascular function.Arterioscler Thromb Vasc Biol. 2017;37:e178–e184. doi: 10.1161/
ATVBAHA.117.309945
14. Satoh K, Kagaya Y, Nakano M, et al. Important role of endogenouserythropoietin system in recruitment of endothelial progenitor cellsin hypoxia-induced pulmonary hypertension in mice. Circulation.2006;113:1442–1450. doi: 10.1161/CIRCULATIONAHA.105.583732
15. Tada H, Kagaya Y, Takeda M,et al. Endogenous erythropoietin system in non-hematopoietic lineage cells plays a protective role inmyocardial ischemia/reperfusion. Cardiovasc Res. 2006;71:466–477. doi:10.1016/j.cardiores.2006.05.010
16. Nakano M, Satoh K, Fukumoto Y, et al. Important role of erythropoietin receptor to promote VEGF expression and angiogenesis in peripheral ischemia in mice. Circ Res. 2007;100:662–669. doi:10.1161/01.RES.0000260179.43672.fe
17. Satoh K, Matoba T, Suzuki J, O’Dell MR, Nigro P, Cui Z, Mohan A,Pan S, Li L, Jin ZG, Yan C, Abe J, Berk BC. Cyclophilin A mediatesvascular remodeling by promoting inflammation and vascular smoothmuscle cell proliferation. Circulation. 2008;117:3088–3098. doi:10.1161/CIRCULATIONAHA.107.756106
18. Satoh K, Fukumoto Y, Nakano M,et al. Statin ameliorates hypoxia-induced pulmonary hypertension associated with down-regulated stromal cell-derived factor-1. Cardiovasc Res. 2009;81:226–234.doi: 10.1093/cvr/cvn244
19. Satoh K, Nigro P, Matoba T,et al. Cyclophilin A enhances vascular oxidativestress and the development of angiotensin II-induced aortic aneurysms.Nat Med. 2009;15:649–656. doi: 10.1038/nm.1958
20. Nigro P, Abe J, Woo CH, et al. PKCzeta decreases eNOS protein stability via inhibitory phosphorylation of ERK5. Blood. 2010;116:1971–1979. doi: 10.1182/blood-2010-02-269134
21. Nigro P, Satoh K, O’Dell MR, Soe NN, Cui Z, Mohan A, Abe J, Alexis JD,Sparks JD, Berk BC. Cyclophilin A is an inflammatory mediator that promotes atherosclerosis in apolipoprotein E-defcient mice. J Exp Med.2011;208:53–66. doi: 10.1084/jem.20101174
22. Satoh K, Nigro P, Zeidan A,et al. CyclophilinA promotes cardiac hypertrophy in apolipoprotein E-defcient mice.Arterioscler Thromb Vasc Biol. 2011;31:1116–1123. doi: 10.1161/ATVBAHA.110.214601
23. Satoh K, Satoh T, Kikuchi N, et al. Basigin mediates pulmonary hypertensionby promoting inflammation and vascular smooth muscle cell proliferation.Circ Res. 2014;115:738–750. doi: 10.1161/CIRCRESAHA.115.304563
24. Ohtsuki T, Satoh K, Omura J, et al. Prognostic impacts of plasma levels of cyclophilina in patients with coronary artery disease. Arterioscler Thromb Vasc Biol.2017;37:685–693. doi: 10.1161/ATVBAHA.116.308986
25. Li W, Dorans KS, Wilker EH, et al. Short-Term exposure to ambient air pollution and biomarkers of systemic inflammation: the framingham heart study. Arterioscler Thromb Vasc Biol. 2017;37:1793–1800. doi:10.1161/ATVBAHA.117.309799
26. Bell G, Mora S, Greenland P, et al. Association ofair pollution exposures with high-density lipoprotein cholesterol and particle number: the multi-ethnic study of atherosclerosis. Arterioscler ThrombVasc Biol. 2017;37:976–982. doi: 10.1161/ATVBAHA.116.308193
27. Plautz WE, Sekhar Pilli VS, Cooley BC,et al. Anticoagulant protein S targets the factor IXa heparin-binding exosite to prevent thrombosis. Arterioscler Thromb Vasc Biol. 2018;38:816–828. doi:10.1161/ATVBAHA.117.310588
28. Stark K, Schubert I, Joshi U, et al. Distinct pathogenesis of pancreatic cancer microvesicle-associated venous thrombosis identifes new antithrombotic targets in vivo. Arterioscler Thromb Vasc Biol. 2018;38:772–786. doi: 10.1161/ATVBAHA.117.310262
29. Zabczyk M, Plens K, Wojtowicz W,et al. Prothrombotic fbrin clot phenotype is associated with recurrent pulmonary embolism after discontinuation of anticoagulant therapy. Arterioscler Thromb Vasc Biol.2017;37:365–373. doi: 10.1161/ATVBAHA.116.308253
30. Weitz JI, Fredenburgh JC. 2017 scientifc sessions sol sherry distinguished lecture in thrombosis: factor XI as a target for new anticoagulants. Arterioscler Thromb Vasc Biol. 2018;38:304–310. doi:10.1161/ATVBAHA.117.309664
31. McCrae KR. Novel mechanism of cancer thrombosis induced bymicrovesicles. Arterioscler Thromb Vasc Biol. 2018;38:692–694. doi:10.1161/ATVBAHA.118.310852
32. Tanratana P, Ellery P, Westmark P, Mast AE, Sheehan JP. Elevated plasma factor ixa activity in premenopausal women on hormonal contraception. Arterioscler Thromb Vasc Biol. 2018;38:266–274. doi:10.1161/ATVBAHA.117.309919
33. Al-Yafeai Z, Yurdagul A Jr, Peretik JM,et al. Endothelial FN (Fibronectin) deposition by α5β1 integrins drives atherogenic inflammation. Arterioscler Thromb Vasc Biol. 2018;38:2601–2614.doi: 10.1161/ATVBAHA.118.311705
34. Masi S, Colucci R, Duranti E,et al. Aging modulates the influence of arginase on endothelial dysfunction in obesity. Arterioscler Thromb Vasc Biol. 2018;38:2474–2483. doi: 10.1161/ATVBAHA.118.311074
35. Harari E, Guo L, Smith SL, et al. Direct targeting of the mTOR (Mammalian Target of Rapamycin) kinase improves endothelial permeability in drug-eluting stents-brief report. Arterioscler Thromb Vasc Biol. 2018;38:2217–2224. doi: 10.1161/ATVBAHA.118.311321
36. Nosaka M, Ishida Y, Kimura A, et al. Contribution of the TNF-α (Tumor Necrosis Factor-α)-TNF-Rp55 (Tumor Necrosis Factor Receptor p55) axis in the resolution of venous thrombus. Arterioscler Thromb Vasc Biol. 2018;38:2638–2650.doi: 10.1161/ATVBAHA.118.311194Downloaded from http://ahajournals.org by on November 10, 2021 e164 Arterioscler Thromb Vasc Biol June 2019
37. Smeets MWJ, Mourik MJ, Niessen HWM, et al. Stasis promotes erythrocyte adhesion to von willebrand factor. Arterioscler Thromb Vasc Biol. 2017;37:1618–1627. doi: 10.1161/ATVBAHA.117.309885
38. Lester PA, Coleman DM, Diaz JA, et al. Apixaban versus warfarin for mechanical heart valve thromboprophylaxis in a swine aortic heterotopic valve model. Arterioscler Thromb Vasc Biol. 2017;37:942–948. doi: 10.1161/ATVBAHA.116.308649
39. Lehmann M, Schoeman RM, Krohl PJ, et al. Platelets drive thrombus propagation in a hematocrit and glycoprotein VI-Dependent manner in an In Vitro venous thrombosis model. Arterioscler Thromb Vasc Biol. 2018;38:1052–1062.doi: 10.1161/ATVBAHA.118.310731
40. Wolberg AS. Modeling venous thrombosis in vitro: more than just (Valve) pocket change. Arterioscler Thromb Vasc Biol. 2018;38:980–981. doi: 10.1161/ATVBAHA.118.310919
投稿人:年青
投稿时间:2021年12月4日